Regional Climate Modeling Efforts for the Western United States: Systematic Comparisons of **Historical Projections based on Dynamical and Statistical** Downscaling

> K.C. King, John Mejia, Darko Koracin Desert Research Institute

Climate Models and Downscaling

- Climate modeling is used to attempt to reconstruct the past and predict the future (long time periods)
- Most climate models used currently have a global scale, referred to as GCMs
 - Running a model over the entire globe for a long period of time takes a lot of computing resources!

- Global climate models tend to have large grid cells (resolution)
 - 100-300 km grid
- Downscaling is the process of taking the results from global climate models and using statistics, modeling, or a combination of the two to achieve regional results

Why do we want regional scale predictions?

- On what scale do we need information?
 - What end product are we interested in?
 - Hydrological modeling?
 - Ecosystem modeling?
 - Urban modeling?
 - Crop modeling?
 - Maurer & Hidalgo (2007) Impact scales of <12 km needed
 - So how do we get to 12 km from 100+ km scales?

Overview of Downscaling

- Dynamical Downscaling
 - Involves running models, referred to as Regional Climate Models (RCMs) to predict climate on a smaller scale (regional or local)
 - GCM outputs drive the boundary conditions for long term simulations
 - Weather forecast models are adjusted to take into account changing forcing over the long term
 - E.g., Greenhouse gases

- Statistical Downscaling
 - Uses what we know from observations and models to interpolate to regional scales
 - "Bridging the gap" between GCM and scales necessary for climate change impact studies
 - Methods:
 - Bias corrections
 - Regression analysis

Objectives of DRI-RCM

Production of <u>regional climate</u> <u>scenarios</u> for impact assessments

- Add value to the GCM ensemble prediction system: Use regional climate model (RCM) and other downscaling methods to predict phenomena such as orographic precipitation and local climate responses
- Develop an ensemble system based on global and regional climate system models.
- Evaluate RCM downscaling products against quality-controlled, high-resolution gridded data sets.

Regions of Interest:

- 3 Regions in NV
 - Western NV (Sierra NV)
 - Eastern NV
 - Monsoon NV (Southern NV)
- 3 Regions in NM
 - Western NM
 - Southeastern NM
 - Mountain NM
- 2 Regions in ID
 - Northern ID
 - Southern ID
- 3 Larger Regions
 - Intermountain West (NV, UT)
 - Sierra NV and Cascades
 - Monsoon region (Arizona, NM)

Regions of Interest

Downscaling efforts thus far

	GCMs	NARCCAP	Bureau of Reclamation	DRI Dynamical Downscaling	DRI Statistical Downscaling
Method	Global atmosphere/ ocean coupled models	Dynamic downscaling using 6 different RCMs	Statistical downscaling of GCM results	WRF-RCM used to dynamically downscale GCM results	Statistical downscaling of GCM results
Drivers	Top, bottom boundary conditions	4 GCMs	16 GCMs	2 GCMs	2+ GCMs
Emissions Scenarios	A1, A2, B1, B2 and variants	A2	B1, A1b, A2	A2	B1, A1b, A2
Grid Size	~100 km	50 km	12 km	36 and 12 km	4 km to Point based
Coverage	Global	North America	United States and parts of Canada and Mexico	Western United States: NV, NM, and ID	Western United States
Parameters	Most Atm. & Oceanic variables	Most Atm. variables at: surface and multiple vertical levels	$\begin{array}{c} \text{Precipitation,} T_{\min},\\ \text{and} T_{\max} \end{array}$	Most Atm. variables at: surface and multiple vertical levels	$\begin{array}{c} \text{Precipitation,} T_{\min} \\ \text{and} T_{\max} \end{array}$
Data Availability	Monthly, 6 hourly (some), or by request	3 hourly	Monthly	1 hourly	Daily -monthly

GCM Comparison: Intermountain Region

GCM Comparison: Monsoon Region

NARCCAP Comparison: Intermountain Region

NARCCAP Comparison: Monsoon Region

BOR Comparison: Monsoon Region

BOR Comparison: Intermountain Region

DRI-RCM Comparison Intermountain Region

DRI-RCM Comparison Monsoon Region

AZ-NM: 1980-2000 Mean (Nov-Mar) Mean (Jun-Sep)

AZ-NM: 1980-2000 q_10 (Nov-Mar) q_10 (Jun-Sep)

AZ-NM: 1980-2000 q_90 (Nov-Mar) q_90 (Jun-Sep)

Conclusions

- Observation gridded data sets do not match each other
 - Scale (spatial-temporal) issues, data assimilation issues
- IPCC-A4 (CMIP-GCM) models tend to overestimate winter precipitation and some underestimate summer precipitation
- IPCC-A4 (CMIP-GCM) models are cold biased while mean summer temperatures are more consistent
- BoR data converges towards the observations
 - Not surprising because the bias correction was determined using this same time period
- NARCCAP RCMs solutions (forced with NNRP) tend to concentrate around observations but spread is relatively large especially for precipitation
- DRI-RCM overestimates rainfall, likely a systematic bias

References

- Maurer, E.P., and H.G. Hidalgo, 2007 Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. *Hydrology and Earth System Science Discussions* 12: 551-563.
- Maurer, E.P., A.W. Wood, J.C. Adam, D.P. Lettenmaier, and B. Nijssen, 2002, A Long-Term Hydrologically-Based Data Set of Land Surface Fluxes and States for the Conterminous United States, J. Climate 15(22), 3237-3251.
 - Data available at: http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridd ed_obs.html

GCM Comparison: Sierra NV and Cascades Region

NARCCAP Comparison: Sierra NV and Cascades Region

